EPMを知ってますか？

名古屋大学工学部教授
工学博士 浅井 滋生

金属分野においては、古くから電気エネルギーを溶解・製鍊・凝固の工程において用いていた。驚くべきことに、高温電磁場による浮遊溶解（リテーション・メルティング）はすでに1923年に提案されていた。また、数十キログラムの金属の非接触溶解を最近可能にしたと聞く話題のCold Crucibleも、基本原理はすでに1931年に提案されていたのである。

さて、電気良導体である液体金属に通電すると発生する磁場が元の通電の電流に作用して、フレミングの左手の法則として知られている電磁力誘導する。この電磁力によって液体金属は流動するが、これは地磁気やオーロラの発生原因にも関連する電磁流体力学現象と呼ばれるものである。

電気エネルギーにはこのほか、液体金属を浮かせたり、あるいは摺拌したり、その流れを止めたり、形状を変えたり、加熱したり、といった諸々の機能がある。このような機能は電場と磁場と液体金属の流れの複雑な相互作用によって生じるものであり、この問題を取り扱う学問が1942年、Alfvén（1970年ノーベル賞受賞）によって体系化された電磁流体力学（Magneto-hydrodynamics）である。

金属製造の分野に電磁流体力学を取り入れ、その知見を積極的に活用する試みは1970年代から始まったといってよろう。1980年代に入ると、この潮流はフランスのブルワール大学に設置されていたMADYLAM（国立研究所）と日本鉄鋼協会内に組織された「材料電磁プロセッティング」（Electromagnetic Processing of Materials=EPM）研究部会に受け継がれた。その後、わが国でのEPMの活動は鉄鋼製造の実用面における圧倒的な量の優れた研究と技術成果を生み出し、その一部は昨年、日本鉄鋼協会主催で開催された「材料電磁プロセッティング国際シンポジウム」で世界に向けて開示され、先進各国の技術を溶け込むところとなった。また、本年度には当金属系材料研究開発センターのご尽力により「電磁力利用によるエネルギー使用合理化金属製造プロセス開発」の国家プロジェクトが発足し、EPMの技術開発が国家規模で推進されようとしている。

このような背景のもと、近年液体エネルギーが必要としない超高電導磁石の開発がなされ、強磁場が容易に入手できるようになってきた。磁化力とは磁石が磁化をかけるために必要な磁力として定義される力だが、この強磁場においては水やプラスチックやセラミックスといった非磁性物質の磁化力によって比較的大きな力を受ける可能性がある。例えば、化学的に活性なセラミックスを浮遊して溶解し、容器との反応を回避するとか、磁化力が結晶方位によって異なる性質を使って分散粒子の結晶方位を一方向に揺さぶる複合材料を作製するとか、EPMの夢は金属、非金属を問わずますます膨らむ。

最近、MADYLAMはわが国で誕生した造語EPMを頂に付けEPM-MADYLAMと名乗っている。EPMも国際的に認知される付ともに、新局面を迎えようとしているが、どこでもまですべての力で引き続きわが国の先進性を維持したいものだ。
高温・腐食環境下生産技術プロジェクト成果総括
「耐腐食性材質及びシーリング技術開発」

本研究は、石油公団の特別研究「高温・腐食環境下生産技術」の研究課題の1つである「耐腐食性材質及びシーリング技術開発」に関するもので、石油開発技術研究費交付金を受けて、昭和60年度より平成5年度まで、当センターが石油公団と共同で実施したものである。

平成4年度までの研究結果の概要については本誌でも逐次報告してきたが、ここでは平成5年度の結果を含めて9か年の研究成果を総括する。

1. 研究の目的

大深度の油・ガス田開発時の経済的な問題、すなわち非常に高い地層温度と厳しい腐食環境に対応するための生産技術が課題となり、高温・腐食環境下にある油・ガス田の長期に安定した生産を支える技術の確立という開発目標が設定された。

2. 研究経緯

本研究開発は、昭和60年度から平成5年度の9年間にわたって、コーティング技術開発等による製品開発と評価試験による開発品評価が実施された。

2.1 製造技術の開発

製造技術は耐食性材質の開発とシーリング技術の開発とに分けられる。

前は、まず小試験片サンプルでコーティング技術のスクリーニングを、次いで種類のコーティング製造方法を選択して短尺管の製造設備を開発し、サンプル試作による性能評価を行った。

プラズマ肉盛溶接法（PTH：Plasma Transferred arc Hard facing process）が最適と判断され、長尺管設備を設置して研究を行い、実実戦で試験ができるC76コーティング油井管を開発した。

後者は、継手シール部のコーティングには複層表面処理法を採用し、耐食性とともに耐ゴーリング性等シーリング特性を有する材料を開発した。また、チュービングのねじ部に経済的に被覆するためのパイプ管端シール技術も開発した。

2.2 評価試験の開発

評価試験は製造技術開発と実戦一体の関係にある。機械的性能、耐食性能（ラブテスト等）及び耐水性（熱サイクルテスト等）を調べるための設備を設計・開発・設置して、開発品の性能評価を実施した。

開発製品の将来の実用化を企図して、海外での第三者機関による評価試験と実実戦における耐食試験を実施するとともに、実生産工程を想定して経済性評価も行った。

図-1に研究開発ステップと設備設置状況をフローチャートで示した。
3. 製造技術の開発

3.1 PTH法によるコーティッドチューニングの作製

PTH法は、高温プラズマアークを熱源に、耐食性・耐摩耗性の優れた高合金粉末材料をプラズマアーク柱に投入し、その溶融物をパイプ内表面に溶着させてコーティングを行う方法である。開発要素は多々あったが、そのなかでもパイプ内で自由に操作できるプラズマトーチの開発がキーポイントであった。

まず、500mm長さのコーティング管が作製できる短尺管設備で、膜特性評価とともに長尺管設備の仕様検討を行った。当初の概念設計段階では、5mの長尺管を2.5m×2式（2.5mずつ両端からコーティング）で直線走行する方法を検討したが、将来の実用化を考慮して、片側から5mまでコーティング可能な（10mコーティング長尺管の作製）方法を開発した。5.6mの長尺トーチを試作し、各種改良を重ねて製造能力アップを図ったツイントーチの開発も行った。

膜材料は各種金属またはセラミックとの複合が検討されたが、ハステロイC276が適当と判断された。サンプル作製において注意したい点は、被膜のビンホール欠陥の防止、並びに熱による歪みや機械強度低下の防止であった。各種の対策を講ずることで初期の特性を満足するコーティングサンプルを作製することが可能となった。

3.2 コーティング作製

高温・高圧シーケンス環境に耐えるため、継手として、図-2に示す表面処理方法が適用されていると判断された。さらに、カップリングの表面処理は、C276Pと同様マグネトロンスパッタリング法(PSMF: Cylindrical Magnetron Sputtering Process)によるC276+Cu膜を、ビン

図-2 細手サンプルのコーティング方法

のシール部には、

低压プラズマ溶射法(LPPS: Low Pressure Plasma Spraying)によるC276膜及びプレーナーマグネットロンスパッタリング法(PSMF: Planar Magnetron Sputtering Process)によるC276膜が適していることがわかった。

またねじ部のC276膜は、場合によっては省略可能であることがわかった。

コーティングねじ部への被覆は、パイプ管端シール要素技術の開発で、経済的に実施することが可能となった。

4. 評価試験

図-1に示したように、各種テストに沿って評価設備を設置し、目標とする製品開発に向けた評価試験を行った。耐食性材質の開発では、耐食性を主体に機械的特性や摩耗性、耐摩耗性を評価した。シリングング型の開発では耐食性とともにシール性、耐ゴムリング性及び熱サイクルステータによる接合性能等の評価試験を実施した。

5. 第三者評価試験及び実用化試験

開発した製品に対して、本プロジェクト外での第三者による客観的な評価を受けて、試作品の性能を実証し、検証するため試験を実施した。

第三者評価については、一次選定7機関（すべて米国）の2機関（いずれも米国）を選び、評価を依頼した。得られた結果は試作製品の性能を保証するもので、コーティング性能はよく、油圧管として実用性があることが示され、一例として、写真1にCLIで実施した耐孔食試験（Critical Pitting Test）後のパイプ内表面状態を示した。

実南极試験については、石油圧縮機と原鉱油三つ四鉱技術研究組合が帝國石油模擬の要件を満たして実施している共同研究「炭酸ガス攻法」の一部として行われたCO₂HUFF & PUFF実験ラインを利用し、実際のCO₂環境下でのフィールド
試験を実施した。図-3に地上フィールド試験での試験体の接続状況と検証用サンプルについて、写真-2に試験状況を示した。これらの試験により開発品が実使用環境下で問題がないことが確認された。

6. 経済性評価

コーティング油井管の実生産工程を想定して経済性評価を実施した。

C276をコーティングした316LIn油井管を月産50tの規模で商業生産するとの前提で試算した結果、同一サイズのC276モノ-ウォーク油井管よりも製作コストが20～30％低減できることを明示した。

7. 結論

具体的な目標にかなう開発製品が得られ、本プロジェクトの所期の目的を達成した。現在、この開発成果を実フィールドで実証し、併せて周辺機関に用いる部材の開発に取り組んでいる。
JRCM創立10周年記念パーティー

JRCM創立10周年記念パーティーが、10月3日(日)午後6時から当センターにおいて、産学官の関係者200人を超える方々のご出席をいただいて、盛大に行われた。

パーティーの冒頭、JRCMの仲沢昌久理事長は「皆様方にご支援を賜り10周年を迎えることができました。金属材料も含めて省資源・省エネルギー・地球環境といったグローバルな課題の解決に、独自的、革新的な技術開発が求められており、所詮の目的達成のために頑張っております。国際化と現代の移動、変化も早く、従って研究開発の成果に対する評価も厳しくなってきています。10周年を一つの契機として、変化に挑戦する意欲をもって新たに頑張りますので、関係各位のご援護、ご協力、ご指導をお願い申し上げます」と挨拶をした。

米国の中野伯通商産業省基礎産業局長（写真左）から「第3次石油危機後の厳しい経済環境下で発足し、困難な環境変化の中でJRCMが果たした成果を上げてきたことに敬意を表す。素材産業の今後の発展に対しては、技術と人材の蓄積が重要な課題であるので、JRCMに対して、建設・土木・産業機械・環境技術等の幅広い複合的な技術開発への対応と、さらに、リサイクル技術の確立のための高度なスクラップ再生利用技術の開発等、大きな期待を寄せている」との祝辞をいただいた。

また、当センターの初代副理事長を務められた武部茂主任室長（写真右）は「ホーキング博士の宇宙に関する本を読んだが、難解で理解できなかった。しかし読んだあとは、わからないのに非常に気持ちがよい本であった。JRCMで研究に取り組んでいる人たちが、ホーキング博士の本を読んで、あとのようなさわやかさをもったソサエティになればいいと思う」と今後広範囲な活動への期待を述べられた。

その後、中島邦雄 通商産業省大臣直筆署名の音楽により乾杯、鉄時点で移り、佐藤尚部長理事長の中緒みのあと、19時過ぎ盛況のうちに散会した。

なお、三井工業ファイハ会館に「JRCM創立10周年記念」と刻んだキーホルダーの記念品が、この10年の成果の一つとして出席者に配られた。

【新人紹介】
①出生地②事務生年月日③最終学歴④職歴⑤仕事に対する期待⑥趣味、特技、資格等
増田 亮一
①兵庫県芦屋市
②1950年12月9日
③大阪大学工学部
④1975年金属工業㈱
山名 寿
①新製鋼技術研究所主任研究員
②1981年神戸製鋼所入社
③製鋼所製鋼技術部製作技術主任部員
④製鋼所製鋼技術部製作技術主任部員
⑤製鋼所製鋼技術部製作技術主任部員
⑥製鋼所製鋼技術部製作技術主任部員
JRCM記念出版と懇親会のご案内
(アルミニウム合金の表面厚膜硬化技術)

JRCMでは、従来から「アルミニウム表面のミリオーダー硬面化技術の開発研究」（WG主査：大阪大学塚接工学研究所・松田穂久教授）を実施していますが、
今後、「アルミニウム合金の表面厚膜硬化技術」を日刊工業新聞社のご協力により、発刊するほんのりとなりました。同書（税込6,400円、約300頁）は12月
12日（土）に全国の書店にて発売されますので、この機会に
JRCM10年の活動成果の一端としてご紹介いたします
さらに、記念講演会と懇親パーティーを右記の日程
で開催します。席に限りがございますので、出席ご
希望の方はお早めにJRCM研究開発部 鈴木、宮坂
TEL: 03-3592-1283 FAX: 03-3592-1285 まで
ご連絡ください。

開催日・場所
第1回 平成7年12月20日(木)
JRCM（東京都港区新宿2-7-17森ビル6階）
第2回 平成8年1月26日(土)
愛知県技術発達交流センター（刈谷市）
第3回 平成8年3月1日(木)
富山県工業技術センター（高岡市）
時間（各会場共通）
講演会 10:30～16:40
パーティー 17:00～19:00

活動報告
第109回広報委員会
日時 10月17日(土) 16:00～18:00
議題 109号検討他
調查委員会
第1回新アルミリーダー表面
改質WG
日時 10月12日(水) 13:30～17:00
議題 出版計画進捗状況及び出版記念
行在他
第2回青色・紫外発光デバイス材料
部会
日時 10月14日(金) 13:30～17:00
議題1 演習 「MIEによるZnSのホモ
エピ成長」
住友電気工業基礎技術研究所
主任研究員 島根士郎
2最近の有機発光材料のレビュ
第3回金属の微生物腐食の検出・
防止技術調査研究委員会
日時 10月12日(木) 13:30～17:00
議題1 演習
出光興産株式中央研究所化学研究
所 佐藤幹夫
2マニュアル内訳検討
第3回金属素材産業におけるLCA
手法に関する調査研究委員会
日時 10月23日(日) 13:30～17:00
講演1 演習「自動車LCAにおける金属
材料リサイクル」
トヨタ自動車(第1材料技術部)
金属材料室室長 近藤敏広
2調整進捗状況報告
第27回スパーツヒーティング用材料
技術委員会
日時 10月17日(金) 13:30～17:00
議題1 平成7年度研究進捗状況報告
2 NEDO技術開発委員会報告他
第7回自動高速プラスマジェット加工
技術委員会
日時 10月13日(金) 14:00～17:00
議題1 追加データ解析報告及び議論
2実験結果
第6回電磁プロジェクト企画技術
委員会
日時 10月4日(月) 10:00～13:00
議題1 記念図案作成報告及び審議
2研究個室立ち合わせ報告他
第2回小型製造WG（鉄系）WG
日時 10月2日(土) 13:30～17:30
議題1 計画説明と研究課題討議
2フォーラムへの対応等
第23回基準部会
日時 10月23日(木) 15:00～17:00
議題1 SSPEの進め方
2第12回学会製品・フォーラムについて

第109号

編集後記
本誌の編集に携わってから、いつの
まにか、最も苦労してしまいました。
3代の広報委員長の下、自らは、ただ
月日を経てきた感じがあるが、人が代
わっても、編集委員の発案か発案かは、
どうしたら多いかの皆さんに本誌を読ん
deいただけるかであったと思う。

防音の、専門的な記事が多いなか
で、いかに読みやすく、親しみをもっ
taいただくか、これからの課題でも
ある。従来の懇親会で、低落ちの皆さん
の反応が神経さされたりすると、「案
外、読まれているんだ」と、委員に
すべての顔が微笑むのである。

日本研究開発センター金属
JRCM NEWS／第109号

本誌は地球環境保全を考慮し再生紙を使用。
本書の内容を無断で複製複製することは禁止します。

発行 1995年11月1日
発行人 本社法人 金属材料研究所開発センター
発行所 本社法人 金属材料研究所開発センター
〒105 東京都港区南39号2階
TEL (03)3592-1282(代) FAX (03)3592-1285